cf = 2Ty,/pV?  is the frictional drag coefficient;
cfy is the frictional drag coefficient of Newtonian fluid in stabilized flow region.
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THERMOCONVECTION WAVES IN ASYMMETRICAL FLUIDS

S. M, Aleinikov and A, A, Mirzoev UDC 536.25:534,21

The propagation of thermoconvection waves in asymmetrical fluids is investigated. The results
lead to a number of conclusions about the influence of microinertia and couple stresses on the
wave propagation velocity and damping.

Lykov and Berkovskii [1, 2] have investigated the propagation of thermoconvection waves in viscous and
viscoelastic fluids, Listrov and Shurinov [3] have studied the propagation of small shear disturbances in cer-
tain asymmetrical media. Here we consider the propagation of thermoconvection waves in asymmetrical
fluids, using the equations of motion with regard for compressibility in the form [4, 5]

dp .

— . d V) = O’ (1)

Py iv (pv)

p%:‘ = —gradp + k rot® — (4 + k) rot rot v + (A + 21 + &) grad div v - pg, @
p.l% = —2ke + krotv—yrotrote | (o -+ f 4 v) graddiv e. S

The tensile stresses tjj and couple stresses mjj are determined from the rheological equations

. B\ (0v, | Ov,\ , 1 oy,
tij=(—p+ Adivv) §; + (P '!‘—2) (a e ) + ke jm (2—3mrz ox (’)m) ) 4
g = o (div @) 8y + O + % (5)
0x; ox

J i

We write the heat-transfer equation in the form [6]

ar oT
o = 0AT s 6
pcp(at—{—vk 6x,,_> +R (6)
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where R is the dissipation function

dv
R l tz] + m” + &; Jktjkm (7)
an

Equations (1)-(3), (6) form a closed system if we complement it with the equation of state
f(p,p, T)=0. (8)

Suppose now that a constant temperature gradient x = 0, antiparallel to the gravitational field, exists in
a fluid occupying the halfspace x = 0 and having a plane free boundary x = 0. Let us assume that the absolute
value of the gradient is less than the critical value at which convection sets in. We wish to analyze the propa-
gation of small temperature, velocity, pressure, and density perturbations in such a system,

We seek a solution of the system (1)-(3), (6), (8) in the form

T=Ty+ T (5 1), v,=0+0,(x 1),
9, =0+ 0)(x,8), ©,=04a,(x 1), ©

p=po+p (%1, p=p+0 (x1).

Here Ty, pg, Pg are the equilibrium temperature, pressure, and density distributions, and T', p', o', v}, v{,
w}, are small perturbations. Substituting expressions (9) into (1)~(3), (6), (8) and neglecting higher than first-
order small quantities, we obtain the linear system

ﬂ)— + 0 du o, (10)

ox
oy (%7% + qv;) — 0Ll _p0u 1)
= (3 )l a2
Poa—;;’i=—@’—+(x+k)%, (13)
-y oo

In the derivation of (10)-(15) we have neglected the variation of the density with the pressure and considered p,
to be constant, It follows directly from (10)-(15) that

) oT’ . 2T po ( Op T’

b (St quy) =0 e o (20 T 6
p°p<at+qy) F (OT)T=T,0t 16)

v’ 9%’ O, dp
k)t B g () 7
Po = (R k) g T R g(ar ,)r=r° an

0 : dv 02w
- ’ R AT 8
ol at = —2ko, + k 3+ ¥ 3 18)

We seek T', vy, w}l in the form of plane waves:

= Nexpli (0f — Kx)], v, = Vexpli (o —Kx)], (19)

o, =R exp [i (of — Kx)],
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Fig, 1, Wave propagation velocity (a) and damping (b)
versus frequency for an asymmetrical fluid (solid
curves) and a viscous fluid (dashed curves).

which brings us to a linear homogeneous algebraic system in the perturbation amplitudes:
(iaw -+ K% N + gV = 0,
dN + (io + fK2) V + iKhQ = 0, (20)
iKsV + (io + 25 + rK?) Q = 0,
where

I

Po (9 ) X X g (9
a=1—-fo (% s b= 0/pcy; d=_—(—) :
PaCs (OT =T, ? o \dT /=1,
f=(n+k)py h==Fklpy s=kiogl; r="lpJ.
The system (20) is equivalent to the dispersion relation
A(0) K+ B (@) K 4 C (@) K* + D (0) =0, 1)
in which
A () = bfr,
B(0) = 2sfb + i@ (br 4 afr -+ bf) + hsb,
C (o) = 2ios (af + b) — @? (b + ar + af) — qhs —rqd,
D (0) = — 2sqgd — qdwi — 2sa0® — iaw®.
Equation (21), which describes the relationship between the wave number K = w/c + if and the cyclic frequency
w, has been solved numerically on a computer. The following values were assigned to the coefficients in SI
units: J = 51075 py=1; g=9.8; pp=1; b=19; £ =40; h=15; s = 3-10% r =2.10% q = 1;d = 107%; a = 105,
which was chosen so as to comply with the thermodynamic constraints on the transport coefficients of the me-
dium [4, 5]. Curves of the wave propagation velocities c(w) and damping factors £(w) are given in Fig. 1 for

symmetrical and viscous (h = s = r = 0) fluids, showing that the allowance for microinertia and couple stresses
yields a new wave, diminishes the wave propagation velocity, and increases the damping factors.

The conclusions drawn from the given calculations are qualitatively consistent with the existing data on
propagation of thermoconvection waves in the case of a viscous heat-conducting fluid [7].

For a viscous fluid we can write (21) in the form
(ioa + bK?) (io + fK?) — dg = 0,
and as w — 0 we obtain K = Ky + iKj = :b/i's/dq75f.

For a thermoconvection wave (dq > 0) we have four roots, two of which correspond to damping as x — =
Ki<0):K; = 4/dq/fb; Ky = —-i¥dg/fb. Thus, for £(w) in Fig. 1, as w — 0 the curve & — 0, while & —Ydq/ib.
Accordingly, ¢; = 0, and ¢, — const,

These results can be used to describe thermoconvection phenomena in suspensions, emulsions, and poly-
mer solutions, as well as to determine the viscous, thermal, and inertial properties of fluids.
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NOTATION

v is the velocity of fluid;

w is the intrinsic angular velocity of fluid;
P is the density;

p is the pressure;

t is the time;

T is the temperature;

g is the gravitational acceleration;

p is the isotropic specific heat;

0 is the thermal conductivity;

J is the scalar constant with dimensions of moment of inertia per unit mass;
w is the cyclic frequency;

K is the wave number;

o, B,Y, A, 4, k are the viscosity coefficients;

5ij is the Kronecker delta symbol;

&ijk is the Levi~Civita tensor density.
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OSCILLATIONS OF A VISCOELASTIC ROD TAKING
THERMOMECHANICAL COUPLING
INTOC ACCOUNT

V. G, Karnaukhov and B, P. Gumenyuk UDC 539,376

The effect of thermomechanical coupling on the forced longitudinal oscillations of a viscoelastic
rod is investigated,

The wide use of viscoelastic materials in many areas of modern technology makes it important to in~
vestigate their behavior under different conditions. In this connection, it is of particular interest to study the
interaction between the deformation and temperature fields, since viscoelastic materials have the ability to
dissipate mechanical energy, and exhibit a considerable temperature dependence of their physicomechanical
properties. Consideration of the thermomechanical coupling leads to nonlinearity in the mathematical formula-
tion of the problem, and enables a number of extremely interesting nonlinear effects fo be explained. These
features of viscoelastic materials manifest themselves most clearly during cyclical deformation, It is shown
in [1], usingthe example of the oscillations of a system with one degree of freedom (a large load on a visco-
elastic spring) that over a certain range of variation of the excitation parameter the amplitude —frequency and
temperature —frequency dependences are nonunique., These results were confirmed experimentally in [2]. A
similar problem was considered in [3] where it was established that for periodic deformations two stable sta-
tionary states with different temperatures are possible. In this paper we investigate the effect of thermome-
chanical coupling onthe dynamicbehavior of a viscoelastic rod for forced longitudinal oscillations. Subcritical
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